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der dreidimensionalen Symmetrieoperationen legt eine
Vereinfachung der Symbole nahe. Man kann in belie-
biger Dimensionszahl, sofern diese nur bekannt ist,
neben héheren Teilzdhligkeiten alle Teilzahligkeiten 2
weglassen und alle Teilzdhligkeiten 1 durch einen Index
ersetzen, an dessen Stelle bei Gleitoperationen der
betreffende Gleitindex tritt. Besteht das Symbol nur
aus Teilzahligkeiten 2 und 1, so schreibt man stets nur
eine 2 und fiigt fiir jede 1 einen Index , hinzu. Die Sym-
metrieoperationen der (18 a—c) schreiben sich in dieser
vereinfachten Form:

n=2:1, 2, 2, 3, 4, 6.
n=3:*1, 24, 2,, 2, 3,, 49, 6,, 3, 4, 6.

n=4:1, 200, 200, 20> 2; 346, 3¢ 3; 400> 455 4; 645 6y 6
33, 43, 44, 63, 64, 66; 5, X, 8.
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Weitere Abkiirzungen von der Art der Symbole fiir
Spiegel- und Gleitebenen nach Hermann und Mauguin
werden vorteilhaft eingefithrt, sobald man sich mit der
Kristallographie in einer bestimmten Dimensionszahl
beschéftigt. Im Rahmen der vorliegenden allgemeinen
Untersuchungen erscheinen sie noch als unzweck-
maéssig.

Meinem Kollegen, Herrn S. Fliigge, danke ich fiir
Beratung in Fragen der Nomenklatur.

* Zu beachten ist, dass die Hermann-Mauguin-Symbole 3, 4,
6 hier als 3,, 4,, 6, geschrieben werden, wihrend die Symbole
3, 4, 6, wie sie hier gebraucht werden, bei Hermann und
Mauguin mit 6, 4, 3 bezeichnet werden! Das Symbol 3 ent-
spricht in allen Raumen mit n > 2 einer 6-zédhligen Symmetrie-
operation, ebenso 5 fiir n> 4 einer 10-zéhligen, 7 fiir » > 6 einer
14-zéhligen Symmetrieoperation u.s.f.
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The choice of planes and lines for computing Fourier syntheses is discussed with the object of
minimizing the number of computations by which all the atoms in a planar molecule may be
located. Formulae are derived for deducing the atomic co-ordinates from the positions of maximum

electron density in such general sections and lines.

Introduction

In order to locate an atom by three-dimensional Fourier
syntheses it is customary to compute the electron
density at points in a plane which, as nearly as possible,
passes through the atomic centre; a line synthesis is
then calculated perpendicular to the plane through the
position of maximum electron density. In orthogonal
systems it is usual to take a plane parallel to two
principal axes, whereupon the line synthesis is com-
puted parallel to the third principal axis. The position
of maximum density in the plane gives the co-ordinates
on the two axes parallel to the plane, and the maximum
on the line gives the third co-ordinate.

When the system is non-orthogonal this procedure
cannot always be followed because, if a section is taken
on a plane parallel to two axes, then in general there
will not be a simple crystallographic direction normal
to this plane. The line synthesis must then be carried
out along a line which is oblique to the section plane.
The atom being assumed spherically symmetrical, its
centre C (Fig. 1) will lie at the intersection of a line
normal to the section plane through the maximum P
and the plane normal to the line through the maximum
@. It is no longer possible to write down the co-
ordinates of the atomic centre directly as the co-

* Now at University Museum, Oxford, England.

ordinates of the maxima in the plane and on the line.
In the monoclinic system, for example, only (010)
sections and [010] lines are necessarily orthogonal, and
this may be the reason why these have been used in

-«

Sectian-plane

X

Fig. 1. Section and oblique-lines.

nearly all three-dimensional analyses of monoclinic
crystals which have been published. It has been
possible to trace only one published structure (Archer,
1948) in which sections in another direction are used
for a monoclinic crystal, and it is not clear in this case
whether 2z co-ordinates are derived from line syntheses
or from a series of sections at small intervals in z; the
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latter procedure would give the correct co-ordinates,
but it is unnecessarily lengthy, since at least three
sections are needed for each atom.

Generalized section and line syntheses

Where the molecule has a completely arbitrary shape it
matters little in which direction the sections are taken,
since individual sections are required for each atom.
However, it often happens that some part if not the
whole of the molecule is planar; in such cases it may
be possible, by careful choice of the section plane, to
reduce the amount of computation needed by making
the section plane coincide as closely as possible with
the planar part of the molecule. In favourable circum-
stances several atoms may thus be obtained on one
section (requiring only one set of preliminary tables in
the computation). Any convenient section parallel to
(hokoly) and any line parallel to [UVW] may be used
to take advantage of planarity in the molecule, but
there is nothing to be gained by using directions which
involve high indices, because in doing so Fourier terms
appear of higher frequency than are normally tabulated
(e.g. on Beevers-Lipson strips). Since half-widths of
peaks for most atoms are of the order of 0-8 A., dis-
placements of atomic centres up to about 0-4 A. from
the section plane will allow a good peak to appear, and
it may therefore be practicable to approximate to the
molecular plane sufficiently closely over a certain area
by means of a simple crystallographic plane.

In order to compute the electron density at points
in a plane

hyz+kyy +lyz=p,

(hos ko 1y, Py constants; , y, z fractional co-ordinates),
it is necessary to substitute for z, y or z in the usual
formula for Fourier summation. For example, in a
centro-symmetrical structure

o (z, y, 2) =XXZZF(hkl) cos 2m (ha+ ky +1z),

2=(po—hoz—koy)/ls,

and so for points lying in this plane

Pplane (T; Y) =ZEZF(hkl) cos 2m

X [(h—Ryl[ly) %+ (k—kol[ly) y+ Ipo/ly).

In each individual case the formula must be arranged

in the most appropriate manner. The equations of the

line parallel to [UV W] through the point (z,, ¥p, 2,) are

(@—20)/U=(y—yo)| V= (2—2)| W,

and for points lying on this line the synthesis might be
rearranged. by substituting for « and y:

Pline(?) = ZZZF (hkl) cos 2m
' RU+EV  RU+EV+IW
X (kx0+ky0— W %+ W Z),

but here again the actual transformation will depend on
the values of U, V, W in the particular case considered.

THE DERIVATION OF ATOMIC CO-ORDINATES

Derivation of atomic co-ordinates

During the process of refining co-ordinates by suec-
cessive Fourier syntheses the position of the maximum
in the section plane will change, but it is unnecessary
to calculate new line syntheses through the new
maxima (provided that the shifts are not too large);
the old line syntheses must, of course, be corrected for
sign changes, but, provided that allowance is made for
the fact that the lines no longer pass exactly through
the maxima, their use is still justified. For this reason
we shall deal with the most general case in which the
line synthesis is computed along a line P'Q’ (Fig. 1).
The problem may then be stated in vector notation as
follows:

A spherically symmetrical distribution of scattering
matter gives maxima

(@) at r,=z,a+y,b+2,c in a plane (kyk,l,) with
normal n,

(b) at ry,=z,a+y,b+2zc on a line parallel to
m[UVW],

uvw]

o (X z)

-

(hako)
(%, y2 2)

/

Fig. 2. Vector form of the general problem.

to find the position r=za+ yb +zc of the centre of the
distribution (Fig. 2). x, y, z are fractional co-ordinates,
and a, b, ¢ are the vectors defining the unit cell. The
centre lies on a line parallel to n through r,, that is,

r=r,+jn.

1)

It also lies on a plane perpendicular to m through r,,
that is,
" (r—r;).m=0. (2)

Substituting for r from (1) in (2),
(ry+jn—r;). m=0,
jn.m=m.(r,—1y),
j=m.(r,—r)/n.m,

m.(r,—r,)

and from (1) o

r=r,+
Now

m=Ua+Vb+Wc and n=hya*+kb*[,c*
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where a.a*=1, a.b*=0, etc. Hence

r=r,4
[(x1—,) a+ (¥ —¥o) D+ (23, —2,) €].[Ua+ Vb+ Wc]
hoU+kg VA1, W
X (hy@* + kyb* +1,c*).
Let

[a (x, —2,) (Ua+ Vb cos y+ We cos f)
+b (y;—y.) (Ua cos y+ Vb+ We cos a)
+¢ (2,—25) (Ua cos g+ Vb cos a+ Wc)]

(U +kyV+1, W) ’
hga* + kyb* + 1 c* =da+eb +fc. (3)
Multiplying (3) by .a, .b, .c in turn, we have

Q:

and let

ho=da?+eab cos v+ fac cos g,
ky=dab cos y + eb?+ fbc cos «,

ly=dac cos f +ebc cos a+ fc2.

Hence
d=|hy/a cosy cosf| [a| 1 cosy cosf|,
kofb 1 cos a cos y 1 cos &
lJe cosa 1 cos f cosa 1
and similar expressions for ¢ and f. Then
r=2,+dQ, y=y,+eQ, z=2+[Q.

Since, in general, &, kg, 1, U, V, W will be very simple
whole numbers (0, 1, 2), the expressions will reduce
in complexity in any case of practical importance.

Example

This technique has been adopted by one of us in
the refinement of the structure of dimethylhydroxy-
pyrimidine dihydrate (Pitt, 1948), the full results
of which will be published later. Of the eleven
different atoms in this structure, seven were found to
lie within 0-4 A. of the plane x=1%; a section synthesis
was computed on this plane and line syntheses through
the seven peaks. The four remaining atoms were
located in two other sections. All eleven atoms might
have been obtained by the use of 3z —z=$ as a section
plane, but this would have required 34 orders in one
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direction in the synthesis, and, moreover, intervals of
1/120th of the repeat distance parallel to this axis
would have been necessary in order to ensure accurate
interpolation at the maxima. Facilities were not avail-
able for this to be done.

For the section z=} we substitute in the general
expression deduced above:

h=1, U=1, a=90°
ky=0, V=0, £=101°09,
I,=0, W=0, y=90°
then
d=1/a%sin? f, e=0, f= —cos facsin?2p,
and Q=a? (x;—x,) +ac (2, —2,) cos [,
and so

x=2,+ (%, — ,)/sin? § + c(2, — 2,) cos ffa sin? f,
Y="Ys
z=2,— (2, —x,) cos fc sin? f— (2, —2,) cos? f/sin? 3.

Hence
x=1-0390z, — 0-0098 — 0-2713 (2, —2,),

Y=Y
2=1-0390 z,—0-0390 2, + 0-1488 (z, — ).

For example, one atom gave peaks at

2,=0-250, x,=0-301,,
Yo =0079,, y;=0-079,,
2,=0-131y, 2,=0-132;,

from which it was deduced that the atomic co-ordinates

are
2=0303;, y=0-079,,

Acknowledgements are due to J. W. Jeffery for
suggesting the final form of the general expression for
the atomic co-ordinates. We are indebted to the Depart-
ment of Scientific and Industrial Research for mainten-
ance allowances.

2=0-139;.
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