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der dreidimensionalen Symmetrieoperationen legt eine 
Vereinfachung der Symbole nahe. Man kann in belie- 
biger Dimensionszahl, sofern diese nur bekannt ist, 
neben hSheren Teilz~hligkeiten alle Teilz/ihligkeiten 2 
weglassen und alle Teilz/ihligkeiten 1 durch einen Index 0 
ersetzen, an dessen Stelle bei Gleitoperationen der 
betreffende Gleitindex tritt. Besteht das Symbol nur 
aus Teilzi~hligkeiten 2 und 1, so schreibt man stets nur 
eine 2 und ftigt ftir jede 1 einen Index 0 hinzu. Die Sym- 
metrieoperationen der (18 arc) schreiben sich in dieser 
vereinfachten Form: 

n=2: 1, 20 , 2, 3, 4, 6. 

n--3:* 1, 20o, 20, 2, 30, 40, 6o, 3, 4, 6. 

n=4: 1, 2o00, 2o0, 2o, 2; 300, 30, 3; 400, 40, 4; 600, 6o, 6; 
33, 43, 44, 63, 64, 66; 5, X, 8. 

Weitere Abk/irzungen yon der Art der Symbole fiir 
Spiegel- und Gleitebenen nach Hermann und Mauguin 
werden vorteilhaft eingefiihrt, sobald man sich mit der 
Kristallographie in einer bestimmten Dimensionszahl 
besch/~ftigt. Im Rahmen der vorliegenden allgemeinen 
Untersuchungen erscheinen sie noch als unzweck- 
m/issig. 

Meinem Kollegen, Herrn S. Fliigge, danke ich fiir 
Beratung in Fragen der Nomenklatur. 

* Zu beachten ist, dass die Hermann-Mauguin-Symbole 3, 4, 
6 hier als 30, 40, 60 geschrieben werden, w/~hrend die Syrnbole 
3, 4, 6, wie sie hier gebraucht werden, bei Hermann  und 
Mauguin mit  6, 4, 3 bezeichnet werdeni  Das Symbol 3 ent- 
spricht in allen R/~umen mit  n > 2 einer 6-z/~hligen Symmetrie- 
operation, ebenso 5 fiir n > 4 einer 10-z/~hligen, 7 ftir n > 6 einer 
14-z~hligen Symmetrieoperation u.s.f. 
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The  choice of  p lanes  a n d  lines for c o m p u t i n g  Four i e r  syn theses  is d iscussed w i th  t he  ob jec t  of  
m in imiz ing  the  n u m b e r  of  c o m p u t a t i o n s  b y  wh ich  all t he  a t o m s  in a p l ana r  molecu le  m a y  be 
located.  F o r m u l a e  are  de r ived  for deduc ing  the  a tomic  co-ord ina tes  f rom the  posi t ions  of  m a x i m u m  
e lec t ron  dens i ty  in such genera l  sect ions a n d  lines. 

Introduction 

In order to locate an atom by three-dimensional Fourier 
syntheses it is customary to compute the electron 
density at points in a plane which, as nearly as possible, 
passes through the atomic centre; a line synthesis is 
then calculated perpendicular to the plane through the 
position of maximum electron density. In orthogonal 
systems it is usual to take a plane parallel to two 
principal axes, whereupon the line synthesis is com- 
puted parallel to the third principal axis. The position 
of maximum density in the plane gives the co-ordinates 
on the two axes parallel to the plane, and the maximum 
on the line gives the third co-ordinate. 

When the system is non-orthogonal this procedure 
cannot always be followed because, ff a section is taken 
on a plane parallel to two axes, then in general there 
will not be a simple crystallographic direction normal 
to this plane. The line synthesis must then be carried 
out along a line which is oblique to the section plane. 
The atom being assumed spherically symmetrical, its 
centre C (Fig. 1) will lie at the intersection of a line 
normal to the section plane through the maximum P 
and the plane normal to the line through the maximum 
Q. I t  is no longer possible to write down the co- 
ordinates of the atomic centre directly as the co- 

* Now at Universi ty Museum, Oxford, England.  

ordinates of the maxima in the plane and on the line. 
In the monoclinic system, for example, only (010) 
sections and [010] lines are necessarily orthogonal, and 
this may be the reason why these have been used in 

/ 
Section-plane 

Fig. 1. Section and obliqueolines. 

nearly all three-dimensional analyses of monoclinic 
crystals which have been published. I t  has been 
possible to trace only one published structure (Archer, 
1948) in which sections in another direction are used 
for a monoclinic crystal, and it is not clear in this case 
whether z co-ordinates are derived from line syntheses 
or from a series of sections at small intervals in z; the 
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latter procedure would give the correct co-ordinates, 
but it is unnecessarily lengthy, since at least three 
sections are needed for each atom. 

Generalized section and line syntheses 

Where the molecule has a completely arbitrary shape it 
matters little in which direction the sections are taken, 
since individual sections are required for each atom. 
However, it often happens that  some part if not the 
whole of the molecule is planar; in such cases it may 
be possible, by careful choice of the section plane, to 
reduce the amount of computation needed by making 
the section plane coincide as closely as possible with 
the planar part of the molecule. In favourable circum- 
stances several atoms may thus be obtained on one 
section (requiring only one set of preliminary tables in 
the computation). Any convenient section parallel to 
(ho kolo) and any line parallel to [UVW] may be used 
to take advantage of planarity in the molecule, but 
there is nothing to be gained by using directions which 
involve high indices, because in doing so Fourier terms 
appear of higher frequency than are normally tabulated 
(e.g. on Beevers-Lipson strips). Since haft-widths of 
peaks for most atoms are of the order of 0.8 A., dis- 
placements of atomic centres up to about 0.4 A. from 
the section plane will allow a good peak to appear, and 
it may therefore be practicable to approximate to the 
molecular plane sufficiently closely over a certain area 
by means of a simple crystallographic plane. 

In order to compute the electron density at points 
in a plane 

h0x+~0y+~0z=p0 
(he, ko, l o, Po cons Cants; x, y, z fractional co-ordinates), 
it is necessary to substitute for x, y or z in the usual 
formula for Fourier summation. For example, in a 
centre-symmetrical structure 

p (x, y, z) = ZZZF(hkl) cos 21r (hx + ky + lz), 

z= (po- hox-  koy)/lo, 

and so for points lying in this plane 

Pplano (x, y)= ZZZF(hkl) cos 2n 

× [ (~ -  h0~/10) • + (k- ~o lllo) y + ~p0/10]. 
In each individual case the formula must be arranged 
in the most appropriate manner. The equations of the 
line parallel to [UVW] through the point (x0, Y0, z0) are 

(X-  Xo)/V= (y-yo)/  V= ( z -  zo)/W, 

and for points lying on this line the synthesis might be 
rearranged by substituting for x and y: 

pane(Z) = EEZF(hkl) cos 21r 

• ( ) x hxo+kY o h U + k V  h U + k V + l W  
• W Z o +  W z , 

but here again the actual transformation will depend on 
the values of U, V, W in the~particular case considered. 

Derivation o f  atomic co-ordinates 

During the process of refining co-ordinates by suc- 
cessive Fourier syntheses the position of the maximum 
in the section plane will change, but it is unnecessary 
to calculate new line syntheses through the new 
maxima (provided that  the shifts are not too large); 
the old line syntheses must, of course, be corrected for 
sign changes, but, provided that  allowance is made for 
the fact that  the lines no longer pass exactly through 
the maxima, their use is still justified. For this reason 
we shall deal with the most general case in which the 
line synthesis is computed along a line P'Q' (Fig. 1). 
The problem may then be stated in vector notation as 
follows: 

A spherically symmetrical distribution of scattering 
matter gives maxima 

(a) at r~=x~a+y~b+z~c in a plane (hokolo) with 
normal n, 

(b) at rl = x~ a + y l b  + z~ c on a line parallel to 
m [UVW], 

[uvw] 

/ 
Fig. 2. Vector form of the general problem. 

to find the position r = xa + yb + zc of the centre of the 
distribution (Fig. 2). x, y, z are fractional co-ordinates, 
and a, b, c are the vectors defining the unit cell. The 
centre lies on a line parallel to n through r2, that  is, 

r = r ~ + j n .  (1) 

I t  also lies on a plane perpendicular to m through rl, 
that  is, 

( r--r l ) .  m=O. (2) 

Substituting for r from (1) in (2), 

(r2 + i n  - rl). m = O, 

jn .  m = m.  (r 1 -  rg), 

j =  m.  ( r l -  r~)/n, m, 

m.(rl-r2) 
r = r 2 +  n .  

n . m  
and from (1) 

Now 

m = Ua + Vb + Wc and n=hoa*+kob* 10c* , 
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where  a .  a * =  1, a .  b*  = 0 ,  etc. Hence  

r = r ~ +  

[(Xl--X2) a +  (Yl-Ye) b +  (z l -ze)  c]. [ U a +  V b +  Wc] 

ho U + ko V + to W 

Le t  

Q= 

× (boa* + k o b *  +/oC* ) . 

[a (x 1 -  xe) (Ua + Vb cos y + Wc cos/?) 
+ b (Y l -Ye)  (Ua cos y + Vb + Wc cos a) 

+ c (z 1 -- z~.) (Ua cos fl + Vb cos c~ + Wc)] 

(ho U + ko V + lo W) 

and  let h o a * + k o b * + l o c * = d a + e b + f c .  

Mult ip ly ing (3) b y  . a, . b,  . c in tu rn ,  we have  

h o = da 9" + eab cos y +fac  cos/?, 

k o = dab cos y + eb 2 +fbc cos a ,  

10 = dac cos fl + ebc cos a +fc  2. 
Hence  

d =  hola 

(3) 

c o s y  c o s f l [ / a ]  1 c o s y  cos/? , 

ko/b 1 cos a [ / I  cos y 1 cos 

lo/c c o s a  1 cosf l  cosc~ 1 

and  similar  expressions for e and  f .  Then  

x = x e + d Q ,  y = y e + e Q ,  z = z e + f Q .  

Since, in general ,  h 0, k 0, l 0, U, V, W will be ve ry  simple 
whole number s  (0, 1, 2), the  expressions will reduce  
in complex i ty  in a n y  case of  prac t ica l  impor tance .  

Example 
This t echnique  has  been adop ted  by  one of us in 

the  re f inement  of the  s t ruc tu re  of  d i m e t h y l h y d r o x y -  
pyr imid ine  d i h y d r a t e  (Pi t t ,  1948), the  full results  
of  which will be publ ished later .  Of  the  eleven 
different  a toms  in this  s t ruc ture ,  seven were found to 
lie wi th in  0.4 A. of  the  p lane  x = 1; a section synthes is  
was  computed  on this  p lane  and  line syntheses  t h rough  
the  seven peaks .  The  four  remain ing  a toms  were 
located in two other  sections. All eleven a toms  migh t  
h a v e  been ob ta ined  by  the  use of  3 x -  z = ~ as a section 
plane,  b u t  this  would  h a v e  requi red  34 orders in one 
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direct ion in the  synthesis ,  and,  moreover ,  in terva ls  of  
1/120th of  t h e  r epea t  d is tance  paral lel  to th is  axis  
would  have  been necessary  in order  to ensure  accura te  
in te rpola t ion  a t  the  m a x i m a .  Facil i t ies were not  avail-  
able  for this  to be done. 

Fo r  the  section x =  ¼ we subs t i tu te  in the  general  
expression deduced above :  

h0=l, u=l ,  
~o=O, v = o ,  

10=0, w=0, 
then  

and  

~ = 9 0  °, 

/? = 101 ° 09', 

y = 90 o; 

d = 1/a s sin s fl, e = O, f =  - cos fl/ac sin eft, 

Q = a ~ ( x l -  x~) + ac (z~ - ze) cos fl, 

a n d  so 

x--- x~ + (x 1 - xe)/sin ~" fl + c(z 1 - z~) cos fl/a sin e fl, 

Y=Ye, 

z = z ~ -  a ( x l -  xe) c o s  file s in  ~ f l -  (z~ - z~) c o s  e f l / s in  2 ft. 

Hence  
x = 1"0390x 1 - 0 '0098 - 0"2713 (z 1 - ze), 

Y=Ye, 

z = 1"0390 z 2 -  0"0390 z 1 + 0.1488 (x 1 - xe). 

Fo r  example ,  one a t o m  gave  peaks  a t  

x 2= 0 .250 ,  x 1= 0.3014, 

Y2 = 0"0792, Yl = 0"0794, 

z2=0.1319, z1=0"1328, 

f rom which it was  deduced  t h a t  the  a tomic  co-ordinates  
are  

x=0"303a,  y = 0 . 0 7 %  z = 0 . 1 3 %  

Acknowledgements  are  due to J .  W. Je f fe ry  for 
suggest ing the  final fo rm of the  general  expression for 
the  a tomic  co-ordinates.  W e  are indeb ted  to the  Depar t -  
m e n t  of  Scientific and  Indus t r i a l  Research  for main ten-  
ance allowances.  
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